Extensions 1→N→G→Q→1 with N=C2 and Q=C22⋊Dic14

Direct product G=N×Q with N=C2 and Q=C22⋊Dic14
dρLabelID
C2×C22⋊Dic14224C2xC2^2:Dic14448,934


Non-split extensions G=N.Q with N=C2 and Q=C22⋊Dic14
extensionφ:Q→Aut NdρLabelID
C2.1(C22⋊Dic14) = (C2×C28)⋊Q8central extension (φ=1)448C2.1(C2^2:Dic14)448,180
C2.2(C22⋊Dic14) = C14.(C4×Q8)central extension (φ=1)448C2.2(C2^2:Dic14)448,181
C2.3(C22⋊Dic14) = C4⋊Dic78C4central extension (φ=1)448C2.3(C2^2:Dic14)448,188
C2.4(C22⋊Dic14) = C14.(C4×D4)central extension (φ=1)448C2.4(C2^2:Dic14)448,189
C2.5(C22⋊Dic14) = C24.44D14central extension (φ=1)224C2.5(C2^2:Dic14)448,476
C2.6(C22⋊Dic14) = C24.46D14central extension (φ=1)224C2.6(C2^2:Dic14)448,480
C2.7(C22⋊Dic14) = C24.47D14central extension (φ=1)224C2.7(C2^2:Dic14)448,484
C2.8(C22⋊Dic14) = (C2×Dic7)⋊Q8central stem extension (φ=1)448C2.8(C2^2:Dic14)448,190
C2.9(C22⋊Dic14) = C2.(C28⋊Q8)central stem extension (φ=1)448C2.9(C2^2:Dic14)448,191
C2.10(C22⋊Dic14) = (C2×C4).Dic14central stem extension (φ=1)448C2.10(C2^2:Dic14)448,194
C2.11(C22⋊Dic14) = C14.(C4⋊Q8)central stem extension (φ=1)448C2.11(C2^2:Dic14)448,195
C2.12(C22⋊Dic14) = Dic7.D8central stem extension (φ=1)224C2.12(C2^2:Dic14)448,293
C2.13(C22⋊Dic14) = D4⋊Dic14central stem extension (φ=1)224C2.13(C2^2:Dic14)448,295
C2.14(C22⋊Dic14) = D4.Dic14central stem extension (φ=1)224C2.14(C2^2:Dic14)448,297
C2.15(C22⋊Dic14) = D4.2Dic14central stem extension (φ=1)224C2.15(C2^2:Dic14)448,300
C2.16(C22⋊Dic14) = Q8⋊Dic14central stem extension (φ=1)448C2.16(C2^2:Dic14)448,325
C2.17(C22⋊Dic14) = Dic7.Q16central stem extension (φ=1)448C2.17(C2^2:Dic14)448,328
C2.18(C22⋊Dic14) = Q8.Dic14central stem extension (φ=1)448C2.18(C2^2:Dic14)448,330
C2.19(C22⋊Dic14) = Q8.2Dic14central stem extension (φ=1)448C2.19(C2^2:Dic14)448,333
C2.20(C22⋊Dic14) = C23⋊Dic14central stem extension (φ=1)224C2.20(C2^2:Dic14)448,481
C2.21(C22⋊Dic14) = C24.6D14central stem extension (φ=1)224C2.21(C2^2:Dic14)448,482
C2.22(C22⋊Dic14) = C24.7D14central stem extension (φ=1)224C2.22(C2^2:Dic14)448,483

׿
×
𝔽